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Abstract

Starting from Maxwell’s equations for inhomogeneous media, nonlinear integral equations of the inverse problem of the

electromagnetic tomography (EMT) are derived, whose kernel is the dyadic Green’s function for the EMT sensor with a homogeneous

medium in the object space. Then in terms of ill-posedness of the inverse problem, a Tikhonov-type regularization model is established

based on a linearization-approximation of the nonlinear inverse problem. Finally, an iterative algorithm of image reconstruction based on

the inverse problem and reconstruction images of some object flows for simplified sensor are given. Initial results of the image reconstruc-

tion show that the algorithm based on the inverse problem is superior to those based on the linear back-projection in the quality of image re-

construction.
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Process tomography is a technique to process the
data collected from an array of sensors in order to ob-
tain quantitative information about distribution of
multi-component flows at an inaccessible location in
industrial process plants. In the 1990s Yu et al. first
proposed a tomography system with a parallel field
sensor based on electromagnetic induction (EMT)[I] .
Then Xiong et al. studied theoretical basis of the
EMT forward problem and dyadic Green’s function
method formulating the EMT inverse problem[ZN”.
This system consists of three main subsystems: a pri-
mary sensor, a control and data processing circuitry
and a computer for image reconstruction. The basic
mechanism of this system is that the excitation coils
acquire the modulated signal from the control circuit
and generate an excitation field (for example, a paral-
lel field) in the object space. The field signals distort-
ed by the measured materials within the object space
are detected by the detection soils and then are fed in-
to the computer via the data processing circuit to cre-
ate a reconstruction image of the object space on the
screen with the aid of an image reconstruction soft-
ware. The EMT is an invasive or non-contacting to-
mography technique, and it can acquire information
on the distribution of conductivity and permeability in
the object space simultaneously, therefore it has po-
tential in applications of many industrial processes
such as oil/sea water transportation in the oil indus-

try, air/molten metal flow in the steel industry, wa-
ter/metallic ores in the mineral industry, cracks of
rotating parts in engineering industry, foreign metal
matter in the food industry and so on.

The image reconstruction is the crux of EMT.
This paper aims at deriving the mathematical expres-
sion of the EMT inverse problem with the electro-
magnetic theory for inhomogeneous medium and giv-
ing the method of the linearization and regularization
of the non-linearity and ill-posedness of the inverse
problem in order to develop an iterative algorithm
based on the inverse problem.

1 Mathematical formulations of the inverse
problem

For an EMT system two problems have to be
solved, namely the forward and inverse problems.
The forward problem is to determine the values mea-
sured by detectors for a distribution of conductivity
and permeability in the object space. For the forward
problem simulation is an important means besides
measurement. The inverse problem is to determine
the distribution of the conductivity and permeability
of the material within the object space from the de-
tected signals, that is, image reconstruction.

The structure of the EMT sensor is shown in
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Fig. 1. 2 denotes the space occupied by the sensor;
5o is the location where the detection coils lie, I' and
n are the inner boundary and inward normal unit vec-
tor of the conducting screen, respective-ly; r is a lo-
cation vector of field point, €,{(r), o,(r), p,(r)
the distributions of permittivity, conductivity and
permeability of the material in 2, as there is only
background medium within the object space D,. And
e(r), o(r), u(r) are correspondent distributions
when there is also inhomogeneous objects within Dy .
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Fig. 1. A cross-section of the sensor.

According to the electromagnetic theory the
boundary value problem for electric field E can be de-
termined by equations
VX g N (r) VX E(r) — o*e " (r)E(r) = jul (r),

re n,

nxE(r)=0, rerl, (1)

where e * (r)=e(r) —j olr) denotes the equivalent
w

permittivity of conductive medium, J(r) is the den-
sity of the exciting current. Introducing the electric
dyadic Green’s function of the first kind for the EMT
sensor G (r, r’), r’ denotes the location vector of a
source point. The integral equation for the electric
field can be derived as

E(r) :jwjadr/G(r,r') (e )J(r)
+ wzfadr’G(r, r/) : #b(r’)(€*(",)
- e {r'MNE(r)
—Jndr’c(r,r’) (P Y
X (p ) = u) (PN V X E(r),
r € . (2)

An expression of the electric dyadic Green’ s
function G(r, r’) for EMT sensor of a layered cylin-
der can be deduced by addition of the reflected wave
terms caused by the layered media on the basis of the
eigenfunction expansions of the dyadic Green’s func-

tion for a single hollow conductive Cylinder[4]. The
physical meanings of three terms on the right-hand
side of (2) are: the first term represents the electric
excitation field E..(r), the second integral charac-
terizes the electric field produced by the polarization
current and/or conduction current induced within the
materials. The third integral corresponds to the elec-
tric field produced by the magnetization source in-
duced within the materials. The electric field denoted
by the second and third terms is designated as the ob-
ject field E;(r). Assuming that displacement cur-
rent is ignored, from (2) we have

E ., (r) :—jwfndr'G(r,r') cup(r)e(r YE(r")
~ij0dr'G(r,r') cup(rH)V’

X (a0 ') = g e (P YH(E),

re . (3)
The first term in (3) is related to a(r”) and the sec-
ond term depends on g {(r’), that is, (3) implies a
dual modality imaging. For a special case, both the
background medium (e.g. air) and the detected ma-
terials (e. g. copper) are non-magnetic (p = py, =
#¢), the third term in (3) equals zero, so we have

E 4, (r) :—ijndr'G(r,r/) s up{r)a(r YE(r),

re Q. (4)
As E(r’) itself is a functional of 6 (r"), Eu;(r) isa
nonlinear functional of ¢ (). The problem to find
o(r’) from given E,,;(r) belongs to a non-linear in-
verse electromagnetic problem that is to solve the
Fredholm integral equation of the first kind.

2 Tikhonov-type regularization of the inverse
problem

The nonlinear inverse problem formulated in
Section 1 is ill-posed in the sense of Hadamard!® ],
that is, the conditions of existence, uniqueness and
stability of the solution are not satisfied. It is neces-
sary that the inverse problem is regularized in order to
obtain an approximate solution that is meaningful
physically and is stable numerically. For simplicity,
and without loss of generality, the image reconstruc-
tion of the copper/air flow formulated in (4) is con-
sidered and the effect of the layered structure of the
sensor on the parallel excitation field can be ignored,
that corresponds to the cylindrical object space lies in
the free space. In this case the dyadic Green’s func-
tion for a two-dimensional transverse magnetic (TM)
wave can be taken as the dyadic Green’s function in
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the integral Eq. (4):
G(r,r') = —4LH(§1’(1e0 lr—r1), (5

where Hél) denotes the Hankel function of the first
kind of the zero order and kg = w’upe * =~ — jwugo
(when the displacement current is ignored). The in-
tegral Egs. (2) and (4) can be written as ( the suffix
p denotes the pth projection) :

Ey(r) = Epalr) + | GUr )2 E,(r)ar,
r 6 Do, (6)
E,on(r) = JD G(r,r)Z(r' YE (r)dr’,

r € 50 (7)
where
Z(r") == jopgo(r’), r’ € Dy, (8)
which corresponds to the distribution of the unknown
conductivity.

The object space Dy is divided into K elementary
units and the values of the object field are measured at
M points. The use of the moment method, by choos-
ing pulse function basis and point matching, can
transform integral Eqs. (6) and (7) into the matrix
relations respectively:

[Epec] = [I~ GkZI[E,], (9)

[Ep o] = [GMI[Z][E,], (10)
where [E, ] and [E,] are K vectors, [I] is a
K X K identity matrix, [ Gx] the K X K symmetric
matrix, [ Z] the diagonal K X K matrix, [ Gy ] the
M X K matrix, [E, 4;] the M vector.

Considering small variations of the conductivity,
(9) and (10) become respectively
[AE,] = [Gk][A(ZE,)], (11)
[AE, ] = [GuI[A(ZE)]. (12)
The quantity [A(ZE,)] can be approximated linear-
ly:
[(A(ZE)] ~ [AZ[E,] + [Z][AE,]. (13)
Introducing (11) into (13) gives
[ACZE))] = [I - ZGx17'[AZ][E,]. (14)
Noting that [ Gk] is a symmetric matrix, we have
(1 -26x17" =L[I-2zGg]™]",
where the asterisk “ * ” denotes the conjugate trans-
pose.

Substituting (14) in (12) yields
[AE, o] = [D,][Az], (15)
where [Az ] is a K vector whose components are the
elementsof [Z]; [D,] is a M X K matrix that is

mathematically called the Frechet derivative, its ex-
pression is

[D,] =[GuIlI - 2Gx]I'[E,], (16)
where [ E »J is a diagonal K X K matrix whose ele-
ments are the components of vector [E,].

Collecting the quantity AE, .; for each view p =
1,2, -+, P leads to the following linear relation:

[AE.;] = [D][Az], (17)

where [AE ;] is a P+ M vector, [D] the P-M X K

matrix.

If we let
AE g, = AEé}};) = E:bj - Eél}:j)’
D = VIE),
Az = Az = WD _ B
E=1,2,-, where E:bj is a measured value of the ob-

ject field, E(()fj) the calculated value of the object field

at the kth iterated point z*’, VEE((){;-) the gradient

matrix of Eg,; with respect to z at iterated point
z*), then solving Eq. (17)is equivalent to solving
the inverse problem with the Newton iterative algo-

rithm.

To overcome the ill-posedness of the inverse
problem, according to Tikhonov’s regularization the-
orym, the inverse problem is transformed into the

extremum problem of the following functional:
J.(az®) = [AEY) — DAaz® || 2
+allaz® |2, (18)
where « is called a regularization parameter, a choice
for @ would be made between accuracy and stability
(the simulation in this study takes « =0.0008). The
optimal perturbation Az*) makes the extreme value
of the above functional equivalent to the solution of
the following equation:
8z = [D*D + oI} 'D"AEY),
Eo=1,2,. (19)

3 Image reconstruction algerithm and initial
results

The image reconstruction algorithm is a numeri-
cal iterative method, which includes a few steps as
follows.

(i) Given z*’ and solving the forward problem

(9) to obtain the total electric field E'*’ inside Dy;

(ii) the estimated vector of the object field at the
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detectors E ((,{:j) is given from Eq. (10);
(iii) calculating the error AE ) — E:bj - g®

obj obj
between the estimated vector and the measured vector;

(iv) the perturbation Az‘*’ and updated vector

2D =2 4 Az are given from relation (19).

The procedures are repeated till an acceptable er-

ror AE;’;) is achieved. The reconstruction images of
various flow-types for 30 iterations are shown in
Fig. 2 (ordinate; o (S/m) and abscissas: X — Y
(m)). For the sake of contrast, the image recon-
structed by a linear back-projection algorithm[6’7] for

a four-object flow-type is also shown in Fig. 2.

Reconstructed image

Four-object flow

Reconstructed image based on
a linear backprojection algorithm

Reconstructed image based on
the nonlinear inverse problem

Fig. 2. Reconstructed images based on the regularization of the inverse problem.
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4 Conclusions

The dual modality electromagnetic tomography
technique can theoretically reconstruct the distribu-
tion of conductivity/permeability simultaneously. Be-
cause of the properties of the soft-field, complex-
field, nonlinear-field and three-dimensional field of
EMT, the linear backprojection algorithms can only
reconstruct qualitative images of simple object-flows.
Quantitative image reconstructions of complex object-
flows depend on the solution of the inverse electro-
magnetic problem of the EMT sensor formulated by
the Fredholm integral equation of the first kind.
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